Volume 8, Issue 2, June 2019, Page: 41-49
Structural and DFT Studies on Molecular Structure of Pyridino-1-4-η-cyclohexa-1,3-diene and 2-Methoxycyclohexa-1,3-diene Irontricarbonyl Complexes
Olawale Folorunso Akinyele, Department of Chemistry, Obafemi Awolowo University, Ile-Ife, Nigeria
Timothy Isioma Odiaka, Department of Chemistry, University of Ibadan, Ibadan, Nigeria
Isiah Ajibade Adejoro, Department of Chemistry, University of Ibadan, Ibadan, Nigeria
Received: Apr. 25, 2019;       Accepted: Jun. 24, 2019;       Published: Sep. 25, 2019
DOI: 10.11648/j.ajpc.20190802.12      View  29      Downloads  15
Abstract
We report a molecular simulation of Pyridino-1-4-η-cyclohexa-1,3-diene and 2-methoxycyclohexa-1,3-diene irontricarbonyl complexes. In this work we employed the Density Functional Theory (DFT) in our calculations to predict the dipole moment, spectra, HOMO-LUMO energies, and chemical reactivity parameters including chemical potential, global chemical hardness, electrophilicity index and polarizability revealing that the complexes are highly reactive. The calculated values were compared with the available experimental values for these compounds as a means of validation. A very good agreement has been obtained between B3LYP theoretical results and the experimental results. We also calculated the excitation wavelength with time-dependent density functional theory and observed a mixture of singlet-singlet and singlet to triplet excitation energies.
Keywords
Density Functional Theory, HOMO-LUMO Energy Band Gap, 1H, 13C NMR Spectra, Chemical Potential, Electrophilicity
To cite this article
Olawale Folorunso Akinyele, Timothy Isioma Odiaka, Isiah Ajibade Adejoro, Structural and DFT Studies on Molecular Structure of Pyridino-1-4-η-cyclohexa-1,3-diene and 2-Methoxycyclohexa-1,3-diene Irontricarbonyl Complexes, American Journal of Physical Chemistry. Vol. 8, No. 2, 2019, pp. 41-49. doi: 10.11648/j.ajpc.20190802.12
Copyright
Copyright © 2019 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
A. P. Farhan, K. S. Hemant, B. Yakoob, P. S. Pashupati. DFT based electrophilicity index and QSAR study of phenols as anti leukaemia agent, American Journal of Immunology, 2006, 2 (1): 23-28.
[2]
W. Kohn, A. D. Becke, R. G. Parr. Density functional theory of electronic structure, J. of Phys. Chem. 1996, 100, 12974-12980.
[3]
P. Hohenberg, W. Kohn. Original papers: Physical Review B, 1964, 136: 864-887.
[4]
R. G. Parr, R. Domnelly, M. Levy, W. Palke. Electronegativity: The density functional view point. Journal of Chemical Physics. 1978, 68: 3801-3805.
[5]
P. Geerlings, F. De Proft, W. Langenaeker, Density functional theory: A source of chemical concept and cost-effective methodology for their calculations. Advances in Quantum Chemistry, 1996, 33, 303-329.
[6]
F. De Proft, J. L. Martin, P. Geerlings. Calculation of molecular electrostatic potentials and fukui functions using density functional. Chemical Physics Letters, 1996, 256: 400-408.
[7]
F. De Proft, J. L. Martin, P. Geerlings. On the performance of density functional methods for describing atomic populations, dipole moments and infrared intensities. Chem. Phys. Let. 1996, 256, 393–401.
[8]
P. K. Chattaraj, A. Cedillo, R. G. Parr. Variational method for determining the Fukui- function and chemical hardness of an electronic system. J. Phys. Chem. 1995, 103, 7645-7646.
[9]
P. W. Ayers, R. G. Parr, Variational Principles for Describing Chemical Reactions:  The Fukui Function and Chemical Hardness Revisited, J. Am. Chem. Soc. 2000, 122, 2010–2018.
[10]
G. Korth, M. I. De Hear, P. A. Mulde. DFT Study on Intramolecular Hydrogen Bonding in 2-Substituted Phenols:  Conformations, Enthalpies, and Correlation with Solute Parameters. J. Phys. Chem. A. 2002, 106, 8779-8789.
[11]
R. G. Parr, R. Pearson. Absolute hardness: companion parameter to absolute electronegativity. J. Am. Soc. 1983, 105, 7512-7516.
[12]
R. G. Parr, L. Von Szentpaly, S. Liu. Electrophilicity index. Journal of American Chemical Society 1999, 121: 1922-1924.
[13]
R. G. Parr, W. Yang. Density Functional theory of atoms and molecules. NY, Oxford University press, 1989.
[14]
C. J. Cramer. Essentials of Computational Chemistry- Theories and models. Chichester, John-Wiley & Sons, 2002.
[15]
D. Young. A practical guide for applying techniques to Real world problems. New York, John-Wiley &Sons, 2001.
[16]
E. Lewars. Computational Chemistry- Introduction to the theory and applications of Molecular and Quantum mechanics. Norwell, MA. Kluwer Academic Publishers, 2003.
[17]
F. Jensen. Introduction to Computational Chemistry. Chichester, John-Wiley & Sons, 2007.
[18]
A. E. Reed, L. A. Curtiss, F. Weinhold. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev. 1988, 88, 899-926.
[19]
P. Fuentealla, J. David, D. Guerra. Density functional based reactivity parameters: Thermodynamic or kinetic concepts? J of Mol. Struct. THEOCHEM. 2010, 943. 127-137.
[20]
X. J. Li, G. S. Jiao. Theoretical studies of the functionalized derivatives of fullerene C24H24 by attaching a variety of chemical groups. J. of Mol. Struct. THEOCHEM. 2009, 893. 26-30.
[21]
G. Maroulis, D. Xenides. Electric Multipole Moments and (Hyper) Polarizability of X–C≡C–X, X = F, Cl, Br and I. Int. J. Mol. Sci. 2003, 4, 263–271.
[22]
V. Chis, A. Pirnau, M. Vasilescu, R. A. Varga, O. Oniga. X-ray, 1H NMR and DFT study on 5-para-X-benzylidene-thiazolidine derivatives with X = Br, F. J of Mol. Struct. THEOCHEM. 2008, 851. 63–74.
[23]
A. D. Becke. "A new mixing of Hartree-Fock and local density-functional theories". Journal of Chemical Physics 1993, 98, 1372–1377.
[24]
C. Lee, W. Yang, R. G. Parr. Development of the Colle-Salvetti correlation-energy formula into a functional of electron density. Physical Review B. 1988, 37: 785-789.
[25]
W. J. Hehre, L. Radon, P. R. Schleyer. J. A. Pople. Ab initio Molecular Orbital Theory. New York, 1986.
[26]
L. Szabo, V. Chis, A. Pirnau, N. Leopold, O. Cozar, S. Orosz. Spectroscopic and theoretical study of amlodipine besylate, J. of Mol. Struct. 2009, 926, 385–392.
[27]
M. Szafran, J. Koput, Z. Dega-Szafran. B3LYP study of the conformers and rotamers of isostructural N-methylpiperidine betaine hydrochloride and (1methylcyclohexyl)-acetic acid. The effect of electrostatic attraction on rotation barriers'' J. Mol. Struct, 2005, 749, 114-121.
[28]
J. C. Dobowalski, J. E. Rode, J. Sadlej. Cysteine conformations revisited. J. of Mol. Struct. THEOCHEM. 2007, 810, 129-134.
[29]
K. Laihia, A. Puszko, J. Linnanto, E. Kolehmainen, ‘1H, 13C and 15N NMR spectral and theoretical studies of some methyl and alkylamino derivatives of 4-halopyridine N-oxides’, J. Mol. Struct. 2006, 783 73–78.
[30]
J. Linnanto, J. E. I. Korppi-Tommola, ‘Spectroscopic properties of Mg-chlorin, Mg-porphin and chlorophylls a, b, c1, c2, c3 and d studied by semiempirical MO/CI methods’, Phys. Chem. Chem. Phys., 2000, 2, 4962–4970.
[31]
J. Zhang, H. Zheng, T. Zhang, M. Wu. Theoretical Study for High-Energy-Density Compounds Derived from cyclophosphazene. IV. DFT Studies on 1,1-Diamino-3,3,5,5,7,7-hexaazidocyclotetraphosphazene and Its Isomers, Int. J. Mol. Sci. 2009, 10, 3502-3516.
[32]
P. W. Ayers, J. S. M. Anderson, L. J. Bartolotti. Perturbative perspectives on the chemical reaction prediction problem. Int. J. Quantum Chem. 2005, 10. 520–534.
[33]
R. E. Stratmann, G. E. Scuseria, M. J. Frisch. An efficient implementation of Time-dependent density functional theory for the calculation of excitation energies of large molecules, J. Chem. Phys. 1998, 109, 8218-8224.
[34]
M. E. Casida, C. Jamorski, K. L. Casida, D. R. Salahub. Molecular excitation energies to high-characterization and correction of the Time-dependent local density approximation ionization threshold, J. Chem. Phys. 1998, 108, 4439-4450.
[35]
G. Dominique, N. Shinichiro. Calculation of the absorption wavelength of dyes using time-dependent density functional theory (TD-DFT), Dyes and Pigments 2000, 46, 85-92.
[36]
S. H. Brewer, D. Wicaksana, M. Jon-Paul. Investigation of the electrical and optical properties of iridium oxide by reflectance FTIR spectroscopy and density functional theory calculations. Chem. Phys. 2005, 313, 25-31.
[37]
L. E. Forslund, F. Rudiger, N. Kaltsoyannis. Time-dependent density functional theory studies of the electronic absorption spectra of N, N-disubstituted 2, 3-dialkylnyl-1,4-diazabuta-1,3-dienes, J. Chem. Soc., Perkin Trans, 2002, 2, 494-501.
[38]
J. Ren, E. Kaxiras, S. Meng. Optical properties of clusters and molecules from real-time time-dependent density functional theory using a self-consistent field, Mol. Phys. 2010, 108 (14), 1829-1844.
[39]
G. F. Bertsch, A. Schnell, K. Yabana. Electron-vibration coupling in time-dependent density functional theory: Application to benzene. J. Chem. Phys. 2001, 115, 4051-4060.
[40]
Z. Liu. Theoretical studies of natural pigments relevant to sensitized solar cells. J. Mol. Struct. Theochem. 2008, 862, 44-48.
[41]
D. Glossman-Mitnik. Computational molecular characterisation of coumarin-102. J. Mol. Struct. Theochem. 2009, 911, 105-108.
[42]
C. Morell, A. Grand, A. Toro-Labe. A new dual descriptor for chemical reactivity, J. Phys. Chem. A. 2005, 109, 205-212.
[43]
S. Shigeyoshi, O. Yu-ya, S. Hirofumi. Theoretical and computational studies of organometallics reactions: Successful or not? The. Chem. Rec. 2010, 10, 29-45.
[44]
C. J. Cramer, D. G. Truhlar. Density functional theory for transition metal and transition metal chemistry, Phys. Chem. Chem. Phys. 2009, 11, 10757-10816.
[45]
M. A. L. Marques, E. K. U. Gross. Time dependent density functional theory, Annu. Rev. Phys. Chem. 2004, 55, 427-455.
[46]
R. J. Cave, K. Burke, E. W. Castener Jr. “Theoretical Investigation of the Ground and Excited States of Coumarin 151 and Coumarin 120,” J. Phys. Chem. 2002, A, 106, 9294-9305.
[47]
L. Bernasconi, M. Sprik, R. Hutter. Hartree-Fock exchange in time dependent density functional theory: Application to charge transfer excitations in solvated molecular systems, Chem. Phys. Lett. 2004, 394, 141-146.
[48]
R. E. Roy, T. Hughbanks. Electronic transition in [Re6S8X6], (X= Cl, Br, I): Results from time-dependent density functional theory and solid-state calculations, Inorg. Chem. 45, 2006, 8273-8282.
[49]
N. A. Besley, A. J. Blundy. Electronic excited states of Si (100) and organic molecules adsorbed on Si (100). J. Phys. Chem. B, 2006, 110, 1701-1710.
[50]
K. Hirose, Y. Meir, N. S. Wingreen. Time-dependent density functional theory of excitation energies of closed-shell quantum dots. Physica E, 2004, 22, 486-489.
[51]
N. T. Maitra, K. Burke, C. Woodward. Memory in time-dependent density functional theory, Phys. Rev. Letts. 2002, 89, 023002.(pp1-4).
[52]
M. Petersilka, U. J. Gossmann, E. K. U. Gross. Excitation energies from time-dependent functional theory, Phys. Rev. Lett. 76, 1996, 1212-1215.
[53]
F. Della Sala, D. Gorling. Excitation energies using an effective exact-exchange Kohn-Sham potential for molecules. Int. J. Quantum. Chem. 2003, 91, 131-138.
[54]
T. Grabo, M. Petersilka, E. K. U. Gross. Molecular excitation energies from time dependent density functional theory. J. Mol. Struct. (Theochem), 2000, 501, 353-367.
[55]
H. Appel, E. K. U. Gross, K. Burke. Excitations energies in time-dependent density functional theory. Phys. Rev. Lett. 2003, 90, 043005. (pp1-4).
[56]
M. Petersilka, E. K. U. Gross, K. Burke, Excitations energies from time-dependent density functional theory using exact and approximate functionals, Int. J. Quantum Chem. 2000, 80, 534-554.
[57]
J. M. Tao, G. Vignale. Time-dependent density functional theory beyond the local-density approximation. Phys. Rev. Lett. 2006, 97, 036403. (pp 1-4).
[58]
Spartan 10V1.1.0, Wavefunction Japan, 2010.
[59]
M. Elango, R. Parthasarathi, G. N. Karthik, A. M. Sabeelullah, U. Sarkar, N. S. Venkatasubramaniyan, V. Subramanian, P. K. Chattaraj, Relationship between electrophilicity index, Hammett constant and nucleus-independent chemical shift J. Chem. Sci. 2005, Vol. 117. No 1. 61-65.
[60]
R. Parthasarathi, V. Subramanian, D. R. Roy, P. K. Chattaraj. Electrophilicity index as a possible descriptor of biological activity, Bioorg. and Med. Chem. 2004, 12, 5533 -5544.
[61]
D. R. Roy, R. Parthasarathi, B. Maiti, V. Subramanian, P. K. Chattaraj. Electrophilicity as a possible descriptor for toxicity prediction Bioorg. & Med. Chem. 2005, 13, 3405-3412.
[62]
C. K. Ingold. Significance of tautomerism and of the reactions of aromatic compounds in the electronic theory of organic reactions, J. Chem. Soc. 1933, 1120.
[63]
C. K. Ingold. Principle of an electronic theory of organic reactions, Chem. Rev. 1934, 15, 225.
[64]
J. N. Bronsted. The electronic theory of valency. IV. The origin of acidity. Recl. TraN. Chim. Pays-Bas, 1923, 42, 718.
[65]
T. M. Lowry. The Uniqueness of Hydrogen" Chemistry and Industry, 1923, 42, 43-47.
[66]
H. Mayr, M. Patz. Scales of nucleophilicity and electrophilicity: A system for ordering polar organic and organometallic reactions. Angew. Chem. Int. Ed. Engl. 1995, 34, 3350.
[67]
S. A. Payan-Gomez, N. Flores-Noiguin, A. Perez-Hernandez, M. Pnon-Miramontes, D. Glossman-Mitnik. Computational molecular characterization of the flavonoid Morin and its Pt (II), Pd (II) and Zn (II) complexes. J. of Mol. Mod. 2011, 17, 979–985.
[68]
S. M. Smith, A. N. Markevitch, D. A. Romanov, X. Li, R. I. Levis, B. H. Schlegel. Static and Dynamic Polarizabilities of Conjugated Molecules and Their Cations. J, Phys-Chem. A, 2004, 108, 11063-11072.
[69]
A. Pırnau, V. Chis¸ O. Oniga, N. Leopold, L. Szabo, M. Baias, O. Cozar. Vibrational and DFT study of 5-(3-pyridyl-methylidene)-thiazolidine-2-thione-4-one. Vibrational Spectroscopy, 2008, 48, 289–296.
[70]
J. Weinberg, D. A. Lerner, C. Balaceanu-Stolnici. Theoretical study of DHEAS: the electronic properties of a complex between DHEAS and serotonin by comparative calculations HF and DFT Revue Roumaire de Chimie, 2007, 52 (8-9) 759-764.
[71]
I. A. Adejoro, T. I. Odiaka, O. F. Akinyele. (2014). Density functional theory and reactivity parameters of dimethylpyridino-1-4-η-cyclohexa-1,3-diene iron tricarbonyl complexes. Journal of Natural Science Research, 2014, 4 (1): 38-45.
[72]
T. I. Odiaka, J. I. Okogun. Synthetic and mechanistic studies of the addition of 4-chloroaniline to tricarbonyl (1-5-η-dienyl) iron II cations J. Organomet. Chem. 1985, 288, C30-32.
[73]
T. I. Odiaka. Synthetic and mechanistic studies of the addition of 4-chloroaniline to tricarbonyl (1-5-η-dienyl) iron II cations J. Organomet. Chem. 1987, 321, 227-235.
[74]
T. I. Odiaka. Synthetic and Mechanistic Studies of the addition of 2,6-dimethylaniline to tricarbonyl (1-5-η-dienyl) iron (II) complexes. (Dienyl = C6H7, 2-MeOC6H7 or C7H9). Inorganica Chimica Acta, 1988, 145, 267-271.
[75]
G. Y. Zheng, D. P. Rillema, J. DePriest, C. Woods. Comparison of solid-state and solution photophysical properties of a platinum (II) biphenyl dicarbonyl Complex: A multiple-state emission study. Inorg Chem. 1998, 37 (14), 3588-3592.
[76]
S. Perun, J. Tatchen, C. M. Marian. Singlet and Triplet Excited States and Intersystem Crossing in Free‐Base Porphyrin: TDDFT and DFT/MRCI Study ChemPhysChem. 2008, 9, 282-292.
[77]
S. Reindl, A. Penzkofer. Higher Excited-State Triplet - Singlet Intersystem Crossing of Some Organic Dyes, Chem. Phys. 1996, 211, 431-439.
Browse journals by subject